14 research outputs found

    Multi-Robot Transfer Learning: A Dynamical System Perspective

    Full text link
    Multi-robot transfer learning allows a robot to use data generated by a second, similar robot to improve its own behavior. The potential advantages are reducing the time of training and the unavoidable risks that exist during the training phase. Transfer learning algorithms aim to find an optimal transfer map between different robots. In this paper, we investigate, through a theoretical study of single-input single-output (SISO) systems, the properties of such optimal transfer maps. We first show that the optimal transfer learning map is, in general, a dynamic system. The main contribution of the paper is to provide an algorithm for determining the properties of this optimal dynamic map including its order and regressors (i.e., the variables it depends on). The proposed algorithm does not require detailed knowledge of the robots' dynamics, but relies on basic system properties easily obtainable through simple experimental tests. We validate the proposed algorithm experimentally through an example of transfer learning between two different quadrotor platforms. Experimental results show that an optimal dynamic map, with correct properties obtained from our proposed algorithm, achieves 60-70% reduction of transfer learning error compared to the cases when the data is directly transferred or transferred using an optimal static map.Comment: 7 pages, 6 figures, accepted at the 2017 IEEE/RSJ International Conference on Intelligent Robots and System

    On the Construction of Safe Controllable Regions for Affine Systems with Applications to Robotics

    Full text link
    This paper studies the problem of constructing in-block controllable (IBC) regions for affine systems. That is, we are concerned with constructing regions in the state space of affine systems such that all the states in the interior of the region are mutually accessible through the region's interior by applying uniformly bounded inputs. We first show that existing results for checking in-block controllability on given polytopic regions cannot be easily extended to address the question of constructing IBC regions. We then explore the geometry of the problem to provide a computationally efficient algorithm for constructing IBC regions. We also prove the soundness of the algorithm. We then use the proposed algorithm to construct safe speed profiles for different robotic systems, including fully-actuated robots, ground robots modeled as unicycles with acceleration limits, and unmanned aerial vehicles (UAVs). Finally, we present several experimental results on UAVs to verify the effectiveness of the proposed algorithm. For instance, we use the proposed algorithm for real-time collision avoidance for UAVs.Comment: 17 pages, 18 figures, under review for publication in Automatic

    Combination of Human Amniotic Fluid Derived-Mesenchymal Stem Cells and Nano-hydroxyapatite Scaffold Enhances Bone Regeneration

    Get PDF
    BACKGROUND: Human amniotic fluid-derived stem cells (hAF-MSCs) have a high proliferative capacity and osteogenic differentiation potential in vitro. The combination of hAF-MSCs with three-dimensional (3D) scaffold has a promising therapeutic potential in bone tissue engineering and regenerative medicine. Selection of an appropriate scaffold material has a crucial role in a cell supporting and osteoinductivity to induce new bone formation in vivo. AIM: This study aimed to investigate and evaluate the osteogenic potential of the 2nd-trimester hAF-MSCs in combination with the 3D scaffold, 30% Nano-hydroxyapatite chitosan, as a therapeutic application for bone healing in the induced tibia defect in the rabbit. SUBJECT AND METHODS: hAF-MSCs proliferation and culture expansion was done in vitro, and osteogenic differentiation characterisation was performed by Alizarin Red staining after 14 & 28 days. Expression of the surface markers of hAF-MSCs was assessed using Flow Cytometer with the following fluorescein-labelled antibodies: CD34-PE, CD73-APC, CD90-FITC, and HLA-DR-FITC. Ten rabbits were used as an animal model with an induced defect in the tibia to evaluate the therapeutic potential of osteogenic differentiation of hAF-MSCs seeded on 3D scaffold, 30% Nano-hydroxyapatite chitosan. The osteogenic differentiated hAF-MSCs/scaffold composite system applied and fitted in the defect region and non-seeded scaffold was used as control. The histopathological investigation was performed at 2, 3, & 4 weak post-transplantation and scanning electron microscope (SEM) was assessed at 2 & 4 weeks post-transplantation to evaluate the bone healing potential in the rabbit tibia defect. RESULTS: Culture and expansion of 2nd-trimester hAF-MSCs presented high proliferative and osteogenic potential in vitro. Histopathological examination for the transplanted hAF-MSCs seeded on the 3D scaffold, 30% Nano-hydroxyapatite chitosan, demonstrated new bone formation in the defect site at 2 & 3 weeks post-transplantation as compared to the control (non-seeded scaffold). Interestingly, the scaffold accelerated the osteogenic differentiation of AF-MSCs and showed complete bone healing of the defect site as compared to the control (non-seeded scaffold) at 4 weeks post-transplantation. Furthermore, the SEM analysis confirmed these findings. CONCLUSION: The combination of the 2nd-trimester hAF-MSCs and 3D scaffold, 30% Nano-hydroxyapatite chitosan, have a therapeutic perspective for large bone defect and could be used effectively in bone tissue engineering and regenerative medicine

    In-Block Controllability of Affine Systems on Polytopes

    No full text
    corecore